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1. Introduction 

S U M M A R Y  
The buckling and vibration of the spoke of a rotating wheel is examined. 

Since the axial load is a function of position closed form solutions for the eigenmodes are proscribed and recourse 
is made to regular and singular perturbation expansions in terms of several dimensionless parameters appearing in 
the governing equations. Some numerical results are also included in the interest of completeness. 

Figure 1. 

The increased importance attached to energy storage has given an impetus to the study and 
design of such devices as flywheels (see Figure 1). 

Operating at high rotation speeds, as they normally do, flywheels exert potentially 
destablizing stresses on their structural components. In particular, the spokes of such a 
flywheel experience a compressive axial stress near the rim which is proportional to the 
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194 W. D. Lakin. R. Mathon and A. Nachman 

square of the angular velocity and hence buckled states could be maintained at sufficiently 
high operating speeds. In addition, the investigation of the free vibration of these spokes is 
clearly of importance in conjunction with avoiding resonance. It is our intention to examine 
both of these topics in this paper. 

As will be seen in the next sections the governing static and dynamic equations preclude 
closed form solutions. However, the dimensionless versions of these equations contain small 
parameters So that asymptotic expansions of the eigenmodes and eigenvalues in terms of the 
relevant parameter may be contemplated. 

The regular perturbation problem associated with the static buckling, Section 2, is 
reminiscent of an earlier investigation by Nachman [1] for rods clamped at the rim only. 
The complications attendant with the axial stress in the present problem, however, 
(compressive near the rim and tensile near the hub as opposed to purely compressive in the 
rim-clamped case) prevent us from achieving even the modest degree of compactness of 
presentation to be found in the earlier work. 

In the vibration analysis, Section 3, attention is restricted to high rotation velocities (in 
consonance with present technological interests) and the result is a singular perturbation 
problem with the added complication of a turning point located within the interval of 
interest. A uniformly valid solution is constructed and approximations to the eigenfrequen- 
cies deduced. Earlier work of a related nature was done by Lakin ([2], [3]), Laking and Ng 
[4] and Lakin and Nachman [5]. 

A modest numerical section is also included to augment the analytical work. 
This work has been supported in part by the National Research Council of Canada under 

grant A7850 (W. D. L.) and a College of Science Research Grant, Texas A&M University 
(A. N.). 

2. S t a t i c  b u c k l i n g  

An elastic rod of length L is clamped to the hub and rim of a steadily rotating wheel of radius 
R, as in Figure 1. ~ When the angular velocity of the wheel is • the axial stress in the 
unbuckled rod is given by 

T = pAt22{½L(R 2 - ~ L )  + (L - s ) [ ½ ( L  + s)  - R ] } ,  (1.1) 

where s is arclength along the rod measured from the rim, p is the density of the rod and .4 is 
its cross-sectional area. 

Since L< R (R - L = hub radius) we have that 

T(O) = 1pAY22L(L - 3R) < 0: compression, 

T(L) = ½pAy22L(R 2 --  ~L) > O: tension. 

The existence of compressive loads in any part of the rod implies the possible corresponding 
existence of static buckled states while the simultaneous existence of tensile loads in the 
remainder of the rod is the novel facet of this problem and is the source of the mathematical 
difficulties. 

If we let EI represent the flexural rigidity of the rod, a balance of forces and moments 
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Buckling and vibration o f  a rotating spoke 195 

results in the equat ion 

El  d4y d ( T d Y  ) 
ds 4 ds ~ = vpA122y, (1.2) 

where y(s) is the small deflection in (out of) the plane of rotat ion for v = 1(0). Setting 
x = s/L, 2 = pAL4922/EI, ~ = R /L  and substituting expression (1.1) for T we obtain 

y(4) = 2{[f(x,  coy'] '  + vy} (1.3) 

where the prime is unders tood to be d/dx and 

f ( x ,  e) = 1(c~ - -~) + (1 - x)[½(1 + x) - el ,  e _> 1 (1.4) 

is a dimensionless axial stress. The boundary  condit ions corresponding to clamped ends at 
s = 0, L are 

y(0) = y'(0) = y(1) = y'(1) = 0. (1.5a~l) 

Case I. v = 0 
Integrating (3) from 0 to x, setting k = y'(O) and v(x) = y'(x) we arrive at 

v" - ,~ f (x ,  c , )v  = k ,  

v(0) = v(1) = 11 v ( x ) d x  = O. 
)o 

(1.6) 

(1.7a-c) 

Equat ions (1.6) and (1.7) represent a rather  unusual eigenvalue problem. Nonhomogeneous  
Sturm-Liouvi l le  problems subject to three homogeneous  constraints have turned up in [6] 
and doubtless elsewhere. The more  serious question resides in the fact that the density, or 
weight function, f ( x ,  ~) is not  of one sign on the interval of interest. We will have more  to say 
about  this shortly. 

It proves convenient  to make the identification 

w(x) = v(x) - x(x  - 1)k/2. (1.8) 

Then 

w" - 2f(x, ~)w = f (x ,  ~)x(x - 1)2k/2, (1.9) 

w(O) = w(1) = O, w(x)dx = k/12. (1.10a-c) 
o 

Consider next the eigenvalue problem 

~)"(x) -- laf(x, e)~b(x) = 0, q~(0) = ~b(1) = 0. (*) 

There is no formal difficulty in producing explicit solutions of (*). In fact, if we set 
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z = (2/z)~(x - a) 

then (*) is transformed into 

~bz~ + [ 1 z 2  - a]q~ = 0,  a = ½ x / ~ ( ~  2 - ct + ~), 

~b(-(2/x)+a) = ~b((2/~)~(1 - ~)) = 0, 

(1.11a-b) 

(1.12) 

so that ~b(z) is a linear combination of the parabolic cylinder functions W(a, z) and W(a, 
-z ) ,  [7]. The eigenvalues Iz, follow from imposing the boundary conditions (1.12a-b); the 
negative ones are most easily obtained by replacing a with - i a  and z with ei/4z. 

In what follows it is necessary to know that the ~b,'s are complete over some suitable 
space. The fact that f(x, a) changes sign on [0, 1] means that (*) is excluded from the 
theorems on completeness developed for standard Sturm-Liouville problems. The proof that 
{q~.(x)} is a complete, orthonormal set is contained in [8]. It suffices here to say that the ~b.'s 
are orthonormal with respect to the weight - p . f ( x ,  ~) and any function which is twice 
differentiable and equals zero at x = 0, 1 is contained in the space spanned by {q~.(x)}. 

Thus we may write 

0O o9 

w(x) = • wJp.(x), k x ( x -  1)/2 = ~ k.dp.(x), 
- - o 0  - -  o 0  

where 

w. = - ~ .  f~ w(x)f(x, ~)~.(x)dx, 

k. = - # .  ~ x(x - 1)f(x,  e)4.(x)dx 

fo = - I t .  c#.(x)[w"/2 - f (x ,  a)w]dx = I~. - 2 
2 

Thus 

2 
w(x) = k -~Y ~ _ #. 

W n • 

Enforcing condition (1.10c) results in the eigenvalue equation 

~ "~ 4.(x)dx = f(,~) ( E l /  h - E  ~ _ ~ .  - ~  

which, by Figure 2, defines a countably infinite set of eigenvalues 2. such that/~.  < 2. 

< /~n + 1" 
1 2 Once a suitable normalization has been adopted (e.g., k = 1 or So v. dx = 1) an attempt to 

graph the buckled modes y.(x) = S~ v.(~)d~ might be initiated. We instead content ourselves 
with the observation that, with 2, > 0, the solutions to (1.6)-(1.7) may be written 

Journal  o f  Engineering Math . ,  Vol. 12 (1978) 193 -206  



Buckling and vibration of  a rotating spoke 197 

F(k) 

1112 

N•/a'l i 
I 
t 

Figure 2. 

\ / 1 

i I / , / ,  

V.(x) = A.W(y., x) + B.W(y., - x )  

where y. = ½x/~J2 (a 2 - a + 1). While this expression is not well suited for discussing the 
existence and distribution of the 2,, or we would have used it immediately after (1.7), it does 

allow us to see that v,(x) and hence y,(x) "wiggles" only for 0 < x < a - x /a  2 - a + ~, 

precisely where f (x,  a) < O. 
Some numerical work augmenting (El) and Figure 2 is provided in Section 4. 

Case lI. v =  l 
While Case I could be handled without much concern about a other than its being _> 1, 

the same will not be true here. Specifically, Equation (3) cannot be integrated and some 

approximation scheme must be used if any sort of analytical expressions are desired. We 
therefore examine the eigenvalue problem for a ,> 1 which entails asymptotic expansions of 

2 and y in terms of powers of e = l/a, and the subsequent solution of a regular perturbation 
problem. 

If we set l /a  = e, Equation (3) assumes the form 

ey (4) = 2{((½(1 - -~e) + (1 - x)[½e(1 + x) - 1 ] )y ' ) '  + ey}. (1.13) 

While Equation (1.13) has all the earmarks of a singular perturbation problem it must be 
kept in mind that 2 = 2(e) and hence the distinguished limit as e ---, 0 must be deduced. There 
are essentially three possibilities. 

1. l i m ~ o e / 2 =  oe: Clearly here we would have y t 4 ) ~ 0  which, together with the 
boundary conditions (5a-d), implies y ~ 0. 
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2. lim~_, o e/2 = 0: This option takes a little untangling before it can be discarded. The 
interval [0, 1] must be split into two main regions and three boundary layer regions. There 
are boundary layers at x = 0, 1 and around x = ½, which is a turning point under the above 
limiting process. The two main regions occupy the spaces between the boundary layers. The 
boundary layer at x = 0 has ~r = (e/2) -+x as its independent variable and 

d4yL 1 d2yL = 0 

as its governing differential equation. Similarly the boundary layer at x = 1 is described in 
terms of ~li = (e/2)-½( 1 - x) and 

d4yR 1 d2yR = 0 

2 

and the boundary layer at x = ½ is described in terms of ~u = (e/2)-~( x - ½) and 

£Yu d ( dyu O. 
d ~  d~ M ~Md~M/I = 

The two main regions are governed by [(x - ½)y']' = O. Applying the boundary conditions 

and matching results in y ,-, O. 
We may therefore conclude that ~. = eA and adopt the expansions 

A ,,~ Z A,e", y ~ y.(x)e" 
n=O n=O 

which, when substituted into (1.13) and (1.5a-d), results in the following O(1) problem 

y(o 4) = Ao[(X !~ ,1, - 21YoJ , (1.14) 

yo(0) = y~)(0) = yo(1) = yo(1) = 0 (1.15a-d) 

Once again we set y ' (0)  = k and v(x) = Y'o and generate 

v" = Ao(x - ½)u + k, (1.16) 

v(0) = v(1) = f~ v(x)dx = 0. (1.17a-c) 

The relevant eigenvalue problem in this case is 

~" - / t ( x  - ½)~ = O, ~ ( 0 )  = ~ ( 1 )  = O. (~) 

Clearly 

A,(½f~) B ~ + (  x _ ½))] ~.(x)  = C n A,{fi~(x - ½)) ~ B~(~. ) 
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where A i and B i are the standard Airy functions [7] and 

i -~ 1 -¢ Ai(211 . ) A~( --2ll. ) 
i -~ i -~ Bi(]It . ) Bi( - ~/~. ) 

defines the eigenvalues/~.. Obviously ½/~.& is between the n th root of A i ( -  x) and the (n + 1)st 
root of Bi( - x) and approaches the n th root of A~( - x) for large/~. I-8]. In fact, one can use 

1--} Ai( -~/~. ) = 0 to define/~, with almost no loss in accuracy. The/~. go symmetrically to + 

and - ~ and the completeness of {@.(x)} is as in Case I. 
Again it proves convenient to define w(x) = v(x) - x(x  - 1)k/2 so that 

w" - Ao(x - ½)w = Ao(x - ½)x(x - 1)k/2, 

w(0) = w(1)= 0, S~w(x)dx = k/12. We expand w(x) and k x ( x -  1)/2 in terms of the 
eigenfunctions of (*): 

w(x) = Y w.ga.(x), kx(x - 1)/2 = Y. k.g~.(x), 

w. = - ~ .  f~ w(x)(x - ½)(~.(x)dx, 

k. = - ~ .  T x ( x  - 1)(x - ½ ) ~ . ( x ) d x  = ¢" - Ao 
Ao 

W n 

and, as before, 

11-2- z ;,.--Ao  .Ix)dx . (E2) 

Since ±,~ --~ 2.34 and 1 -~ 2/~1 2fl2 ~ 4.09 we can conclude that 102.5 < A(o l) < 547.3. 
It is also worth mentioning that the large ~ results obtained here apply equally well for v 

= 0 and hence the eigenvalues become asymptotically equal. This conclusion is well borne 
out in the numerical work of Section 4. 

3. Transverse vibrations 

We now wish to examine vibrations of the spoke in the plane perpendicular to the plane of 
rotation. Let u(s, t) denote the transverse displacements, which are assumed sufficiently 
small that non-linear terms may be consistently neglected. Then u(s, t) is a solution of the 
dynamic equation. 

E I m  ~4u O { T ( s )  gu } ~21"1 
(~S 4 OS ~S = - p A  t3t2 , 

where T(s) is the axial stress given in Equation (1.1). We will seek harmonic vibrations of the 
form u(s, t) = w(s)e i°t. Non-dimensionalizing again with x = s/L and ct = R/L  now leads to 
the equation 
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e3w t4) - f ( x ,  a)w" + (x - ~)w' - 2w = O, (2.1) 

where 

e 3 -  pAf22L 4 and 2 =  

Associated boundary conditions are 

w(O) = w'(O) = w(1) = w'(1) = O. (2.2) 

For rapid rotation rates, e 1 will be real, positive, and small. Equation (2.1) may thus be 
examined using singular perturbation methods. The principal sources of mathematical 
difficulty are now the turning points of the differential equation where f ( x ,  ~) vanishes. If fl 
= (a 2 - a + ½)½, these turning points occur at x = ~ _+ ft. In particular, the turning point at 
xc = a - fl always lies in the interior of the interval [0, 1] for a > 1. Neither boundary point 
lies inside the critical layer about x c, so outer expansions may be consistently used at x o = 0 
and xl = 0 to form a characteristic equation for the eigenvalues 2. However, appropriate 
outer expansion valid at x o must be continued across the turning point to reach x r This is a 
somewhat delicate matter as, in the complex x-plane, outer expansions for three in any set of 
four linearly independent solutions of (2.1) will exhibit the Stokes phenomenon. To further 
complicate the situation, in the complex x-plane, x 1 lies directly on a Stokes line while x o lies 
directly on an anti-Stokes line. 

The ~ dependence in the eigenvalue problem (2.1, 2) may be transfered from the governing 
differential equation to the boundary conditions by defining the new independent variable 

y = (x - a)/fl 

If w(x) = w(y) and a prime now denotes d/dy, equation (2.1) becomes 

eaw t4) - ½(1 - y2)w" + yw' -- ~.W = 0 (2.3) 

where e 3 =  earl -4. The turning point x c = c t -  fl is transformed to Yc = - 1  and the 
boundary conditions (2.2) become 

w(--,/fl)=w'(-,/fl)= w ( ~ - ) =  w,(-~-L) = o. (2.4) 

Equation (2.3) arises in the study of the small transverse vibrations of a rotating flexible rod 
which is clamped on the axis of rotation and has its other end free. Approximations to a set 
of four linearly independent solutions of (2.3), which are "numerically satisfactory" in the 
sense of Miller [9], have been obtained by Lakin [2] using the method of matched 
asymptotic expansions. To write the appropriate outer expansions at Yo = - ~ / f l  and Yx 
= (1 - a)/fl in more compact form, let 

t ] l ( Y )  = Pv(--Y) + 0('~3), 
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Buckling and vibration of a rotating spoke 201 

fi2(Y) = - 2 Q v ( - y )  + [log 2 - 2v(v + 1)]P~(-y)  + 0(/~3), 

g+(y) -~n ~e "(y + 1) "~ exp _+e -~ '{1 + O(e~)}, 
1 

v~°)= -15_(y) and ~(2 ° )=  if+(y), (2.5a~t) 

where Pv and Q~ are Legendre functions of degree v and ~u(z) is the digamma function 
F'(z)/F(z). Denote the balanced solution of (2.3) which is regular at Yc by Ul(y ), and the 
balanced-type solution which is balanced in - 2 n / 3  < ph(y + 1) < 0 by U2(y ). Denote the 
dominant-recessive type solutions of (2.3) which are recessive in Iph(y + 1)1 < n/3 and - n  
< ph(y + 1) < -n /3  by V~(y) and V2(y ). Then, with v(v + 1)/2 = 2, at Yl on the Stokes line 
ph(y + 1) = 0, 

UI(Yl)~fit(Yl), 

VI(y)~vl(Yl), 

Uz(Yl)'~Uz(yl)+nivl(Yl), 

V2(Yl)~--v2(Yl)-½Ul(Yl)-½Vl(yl). (2.6a~t) 

Similarly, at Yo on the anti-Stokes line ph(y + 1) = - n ,  

UI(YO)=Ul(Yo), 

V2(yo)=V2(Yo), 

U2(Yo)=U2(Yo)-2niv2(Yo), 

Vl(Yo)=Vl(yo)- v2(Yo)-Ul(Yo). (2.7a-d) 

The exponentials in z71 and /~2 are  maximally recessive and dominant, respectively, at Yl, 
while ~i 1 and ti 2 are both balanced at Yl. Approximations to all four solutions are balanced 

at Yo. 
The exact eigenvalue relationship obtained from the boundary conditions (2.4) involves a 

four-by-four determinant. If Wk(X, Y) denotes the Wronskian of X(y) and Y(y) at Yk (k 
= 0, 1), without approximation 

A = Wo(U1, V2)Wl(Vl, V2) - Wo(Vl, V1)WI(U2, V2) + Wo(U1, V2)WI(U2, el) 

+ Wo(U2, VI)WI(U1, V2)-  Wo(U2, V2)WI(U1, Vl)-[- Wo(Vl, V2)WI(U1, U2)~-O. 

Using (2.7) and (2.8) in the Wronskians above gives a consistent approximation to d 
which contains three types of terms and may be written as A = ~ + ~ + ~.  Terms in 
contain the positive exponential in 17+ (Yl) and are maximally dominant at yl. Terms in 
and ~ are balanced and recessive. Lowest order terms in ~ will thus give first approxi- 
mation to the desired eigenvalues. In particular, 2 t°) is a root of the equation 

Journal of Engineering Math., Vol. 12 (1978) 193-206 



202 W. D. Lakin, R. Mathon and A. Nachman 

{ P ~ ( a / f l ) Q v ( ~ - ) -  P~(~--~-~-)Q~(~/fl)} sin ((~, e) 

rc a -  i 
+ -~  P ~ ( a / f l ) P , ( ~ - - ) e x p { i ( ( a , e ) } = O ,  (2.8) 

where 

and 

2 (°) = v(v + 1)/2. 

If ((~, e) ~ mrc (m = 0, _+ 1, _+2 . . . .  ) the eigenvalue relationship (2.8) will be irreducibly 
complex. In this case, the boundary value problem (2.3,4) will not have real, positive 
eigenvalues and the corresponding frequencies 09, involving 2 ½, will have negative imaginary 
parts. Hence, for rapid rotation rates the harmonic vibrations we i'°' will grow with time, i.e. 
they will be unstable. A similar conclusion holds even in the special case ( =  m~z when 
equation (2.8) is real. Here, Pv(a/fl)= 0 with ~/fl > 1 implies that Pv must be a conical 
function so that vn = -½ + iK~, n = 0, l, 2 . . . . .  with K,  > 0. This situation is similar to an 
off-clamped rod with one free end studied by Lakin and Nachman [5]. To lowest order the 
eigenvalues are 2~ °) = - (K 2 + ¼), real but purely negative. Hence, the vibrations are again 
unstable. 

This work has not explicitly treated non-transverse vibrations of the rotating spoke. 
However, experience in [5] indicates that transverse vibrations are more stable than 
vibrations in other planes. Hence, instability may also be expected for the non-transverse 
vibrations. 

4. Approximation of lowest eigenvalues by the Galerkin method 

Consider transverse vibrations of a spoke: 

L(w) = eaw iv + ½(x 2 - 2ax + ct - 1)w" + (x - ct)w' - 2w = O, (3.1) 

where • > 1, 0 < e ~ 1 and w satisfies the boundary conditions 

w(0) = w'(0) = w(1) = w'(1) = 0. (3.2) 

The solution will be approximated by a linear combination 

r l  

w, = Y~ Ck49k(X) (3.3) 
k= l  

of basis functions (~k satisfying the conditions (3.2). Assuming that {$1, ~2 . . . .  } is a complete 
system of functions in a space containing the solution of (3.1) the Galerkin approximation 
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can be found from the following orthogonality conditions 

f ~  L(wn)r~idx = O, = . . . . .  n. i 1 

The resulting homogeneous system of linear equations 

N 

A c  = ~, (aig - ) , b i j ) c  j - -  0 ,  i = 1 , . . . ,  n, 
j = l  

where 

f l 3 iv 1]A~,, 
aij = [e r~j + ½(x 2 - 2~x  + ,  - 3,v,j + (x - ~)dpj](oidx, 

0 

Ix 
0 

has a nontrivial solution only if the determinant of A vanishes 

203 

(3.4) 

(3.5) 

(3.6) 

det (A) = O. (3.7) 

Then the roots 21 . . . . .  2. of (3.7) will approximate the first n eigenvalues of (3.1) correspond- 
ing to the eigenfunctions 

n 

w.l = Z Ck,(Ok(X)" (3.8) 
k = I  

In order to approximate the lowest eigenvalues of (3.1) subject to (3.2) let 

wn(x) = x2(1 - x)2(Cl + c2x + . . .  + c,,x"). (3.9) 

Then the second approximation w2(x ) yields 

630 C1 + ~-e 4 2520 1 0 C2=0 '  

e3+ 252~ 126~ C1 + -~- + 4 1 5 8 ~  2 0 C2=0" (3.10) 

Equating the determinant to zero we obtain a quadratic equation in 2 

22 - (4464e 3 + 3)2 + 1995840e 6 + 168e 3 - ~(2c~ - 1) 2 = 0, (3.11) 

the solution of which is 

21.2 ___ 2232e3 + 1 -T- x/(1728e 3 + 1)2 + 11(~ - 1)2. (3.12) 
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204 W. D. Lakin, R. Mathon and A. Nachman 

Then the eigenfunction corresponding to the smallest eigenvalue 21 is given by 

W21(X ) = X2(1 --  X ) 2 ( 1  - -  2 
x//H-fl 2 + 1 - 1 ) 

+ 1 1 x , ( 3 . 1 3 t  

where fl = (6~ - 3)/(10368e 3 + 1). 

F rom  (3.11) or (3.12) it is possible to estimate the critical e = e~ for which 2x(~ , ec) = 0: 

(7 1)/ e c = ~ - + - 360. (3.14) 

Its inverse 2~ = e~ 3 corresponds to the lowest positive eigenvalue for transverse buckling 
of the spoke. The eigenfunction is given by 

2016e3 ) 
w 2 c = x 2 ( 1 - x )  2 1 -  1 0 0 8 e 3 + 2 ~ _ 1  x . (3.15) 

Finally, equat ion (3.11) can be used to estimate the lowest positive eigenvalue 2~ for the 
in-plane buckling of the spoke, by setting 2 = i. Then  

( X / 5 ( ~  1 ) 2  22801 179"~/360 
2;-1 = e3 = 7- + 21344~-----4- + 4 6 2 / / /  (3.16) 

and the corresponding eigenfunction 

2016e 3 - 4 ) 
w2i = x2(1 - x) 2 1 - 1008e3 + 2~ - 3 x . (3.17) 

An accurate approximat ion to the lowest positive eigenvalues and eigenfunctions can be 
obtained by employing piecewise polynomial  basis functions. 

For  cubic-Hermite polynomials  we may write (3.8) in the form 

n-1  
w2,_2(x ) = ~ [Ck~lo(nX --j)  + dkgq(nx - - j ) ] ,  0 ~ X N 1, (3.18) 

j = l  

where 

0, x > l  

~,o(X) = (1 - x)2(1 + 2x), 0 < x < 1. 

~ 'o(-X),  x < 0 

0, x > l  

~,x(X) = (1 - x)2x, 0 < x < 1. 

- ~ u l ( - x ) ,  x < 0 

(3.19) 

The error  in the approximat ion is of the order  O(n-4). For  n = 40 the eigenvalues 
2 c and 2 t are accurate to 4 significant figures. 
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.5" 
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.3 

.2. 

.I C !  
= I0  

.; .2 ~ .:~ ; .6 7 8 ; 
Figure 3. 

1 2 10 100 

,'o 

2c (transverse) 681.3 233.9 37.18 3.552 
21 (in-plane) 371.2 188.9 35.96 3.541 

This agrees fairly well with (3.14) and (3.16) which yield values about 20% larger than those 
listed in our table. The eigenfunctions corresponding to ~ = 1, 10 are depicted in Figures 3 
and 4. (All eigenfunctions are of norm 1 in L 2). 

We complete the table by presenting the second and third eigenvalues for transverse and 
in-plane buckling. 

Second Eigenvalue: 

1 2 10 100 

2c(transverse ) 1777.3 569.16 87.51 8.31 
21 (in-plane 1400.49 523.66 86.35 8.30 

Third Eigenvalue: 

1 2 10 100 

2 c (transverse) 4336.5 1378.8 211.65 20.10 
21 (in-plane) 3323.23 1256.04 208.57 20.08 

.5 

.4 

. 3  

.I. 

0 

Figure 4. 

~ a=lO 

, , , , , , , , = 

.I .2 .3 .4 .5 .6 .7 .8 .9 1.0 

Journal of  Engineerin 9 Math., Vol. 12 (1978) 193-206 



206 W. D. Lakin, R. Mathon and A. Nachman 

5. Conclusion 

The buckling and vibration of a rapidly rotating spoke was investigated. Bounds for the 
eigenvalues of the buckled modes were obtained for all rotation speeds and eigenfrequencies 
of vibration for high rotation speeds. Also a table of the first three buckling eigenvalues for 
various dimensionless lengths was provided. 
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